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Statistical mechanics of quartic oscillators
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We study statistical mechanics of quartic oscillator with two degrees of freedom, which is known to be
chaotic almost everywhere except in a few regions of the parameter range. We obtain exact expressions for
temperature, entropy, and distribution functions. Temperature is also obtained numerically by time averaging
the kinetic energy and using equipartition theorem and agrees with our expressions when the system is almost
chaotic. We further generalize our model to quartic oscillators withN degrees of freedom, and exact expres-
sions for thermodynamic quantities are obtained. AsN→`, standard statistical mechanics results are recov-
ered. We also discuss pressure, density, and equation of state of this system.@S1063-651X~97!09803-6#

PACS number~s!: 05.45.1b, 02.50.2r, 05.70.Ce
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I. INTRODUCTION

Statistical mechanics~SM! @1# is normally used to study a
system with a large number of particles~degrees of freedom!
in thermal equilibrium. In recent years, however, ma
Hamiltonian systems~e.g., the Henon-Heiles oscillator! with
a few (N52,3) degrees of freedom have been found that
almost chaotic@2# in nature. Further, it has been shown th
just as for systems with many degrees of freedom, one
define ‘‘macroscopic’’ variables such as temperature,
tropy, and distribution function, for these chaotic syste
with N52,3. The ‘‘macroscopic’’~thermodynamics or SM!
quantities characterize the ‘‘macroscopic’’ state of t
N52,3 chaotic systems. It is therefore natural to expect
in these cases the macroscopic quantities may enable on~as
in thermodynamics and SM of large systems! to learn about
many aspects of the system without explicitly carrying o
detailed calculations involving the orbits of the particles.

A large number of studies in the thermodynamics of
Henon-Heiles~HH! oscillator have been carried out but the
have some limitations. First, the HH oscillator is almost ch
otic only for energy«51/6 and second, due to resonan
coupling between the two oscillators the role of chaotic
havior in the determination of thermodynamics of such
system is not clear. In view of this, we consider a qua
oscillator ~QO! model, which does not have the difficultie
associated with the HH oscillator mentioned above. Anot
major advantage of the quartic oscillator is that we are a
to derive analytic expressions for temperature, entropy,
distribution function for the system.

For theN52 quartic oscillator we also estimate nume
cally the time average of kinetic energies of each degre
freedom. We find thermalization of energy and estimate
temperature from equipartition theorem, which matches
temperature obtained analytically. In this model, the te
perature has a very simple linear variation with the total
ergy. The equipartition of energy takes place because of
nonlinear interaction so that system as whole is almost c
otic. Further, we are able to generalize the model from tw
degrees of freedom toN degrees of freedom and again an
551063-651X/97/55~3!/2525~5!/$10.00
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lytically derive thermodynamic quantities and distributio
functions. From the expressions we can explicitly see t
the definition of entropy used for a finiteN system and that
used in SM matches forN→`. Similarly, the particle mo-
mentum distribution goes from a flat distribution to a Gau
ian asN goes from 2 tò . We also derive the equation o
state for a chaotic quartic oscillator withN52.

In Sec. II we describe the quartic oscillator withN52 and
evaluate it’s thermodynamic functions. A discussion of t
quartic oscillator withN degrees of freedom follows in Sec
III. The distribution functions and the equation of state a
derived in Sec. IV. Summary and conclusions are given
Sec. V.

II. N52 QUARTIC OSCILLATOR

The Hamiltonian of this model is

H5
~p1

21p2
2!

2
1
q1
4

2
1
q2
4

2
1

a

2
q1
2q2

2 , ~1!

whereq’s andp’s are generalized coordinates and momen
respectively, anda is a parameter. Some of the classical a
quantum mechanical properties were studied in@3–5#. Here
we investigate the statistical mechanics and thermodynam
of this system when it is almost chaotic. It was shown
Berdichevsky and Alberti@2# that one can apply SM to a
chaotic system, even though it has a few degrees of freed
with a slight modification of the definition of entropy an
distribution function from that of usual SM. More precisel
they studied the SM of the HH oscillator. Here we study t
quartic oscillator model because it does not have problem
resonance coupling between oscillators and is almost cha
for a wide range of energy and parameter valuea (a.6). It
is fully integrable fora50,2.

Following Berdichevsky and Alberti@2# for a system with
a few degrees of freedom entropy is defined
S(E)5 lnG(E), whereG is the phase-space volume bound
by the constant energy (E) surface. Thus,
2525 © 1997 The American Physical Society
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G~E!5E
H<E

dp1dp2dq1dq2 , ~2!

and on integration over momenta, we get

G~E!5E dq1dq2~E2U !, ~3!

which on integration by parts gives

G~E!52pE
0

E

A~e!de. ~4!

HereA(e) is the area in the (q1 ,q2) plane, bounded by the
curvesU(q1 ,q2)5e, i.e.,

A~e!5E
U<e

dq1dq2 , ~5!

which on integration over one of the variable gives

A~e!54E
0

~2e!1/4

dxS 2
ax2

2
1
1

2
A~a224!x418eD 1/2, ~6!

in our QO model. As an example, we takeE52.5, and
a5500. For this set of parameter values theN52 quartic
oscillator is almost chaotic, as can be seen from Fig. 1. Fr
the expression for entropy we can obtain the temperat
TB

215]S/]E and by explicit integration we can very easil

get TB5 2
3E. With the usual definition of entropy in SM

S5 ln(]G/]E) we would have got a temperature, sa
Ts52E. Our numerical result for temperature, which is o
tained by taking time average of momentum square of p
ticles 1 and 2, is shown in Fig. 2. We can see that asym
totically the values approach each other and equal
TB52E/3.

FIG. 1. Poincare´ section (q2,p2) of 2 QO for E52.5 and
a5500, whereq2 andp2 are coordinate and momentum of partic
2, respectively.
m
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,
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III. N DEGREES OF FREEDOM QUARTIC OSCILLATOR

ConsiderN coupled quartic oscillators. The Hamiltonian
is

H5
1

2 (
i51

N

pi
21

1

2 (
i , j51

N

a i j qi
2qj

2[
1

2
p21U, ~7!

wherea i j are parameters. This system reduces to our earl
N52 quartic oscillator for a115a2251 and a12
5a215a/2. In Eq.~7! U is the potential energy. We follow
Khinchin’s @1# procedure to evaluate the thermodynami
quantities, assuming that parameters are such that the sys
is almost chaotic. The phase space volumeG(E) is

G~E!5E
H<E

dp1•••dpNdq1•••dqN5C1E
3N/4, ~8!

whereC1 is a constant. Equation~8! follows from a simple
scaling argument by noting thatqi has dimensionsE

1/4 and
pi has dimensionE

1/2. The structure functionV(E) is given
by

V~E![
]G

]E
5C1

3N

4
E~3N/421!, ~9!

and the generating function

F~a!5E
0

`

dxe2axV~x!5C2a
23N/4, ~10!

so that

lnF~a!5 lnC22
3N

4
lna, ~11!

whereC2 is a constant. Temperature, which is defined by th
relation

FIG. 2. Time averaged momentum square of particle 1~solid
curve!, particle 2,~dash-dotted curve!, andTB ~dotted curve! plots
for N52 quartic oscillators~2 QO! for E52.5 anda5500.
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] lnF~a!

]a U
a51/T

52E, ~12!

immediately gives

T5
4

3N
E. ~13!

For theN52 QO the above relation givesT52E/3, which
we obtained earlier using Berdichevsky’s definition of e
tropy. The entropy is given by

S5
E

T
1 lnF~T!1const5

3N

4
lnE1const5 lnG~E!1const,

~14!

which is different from the usual SM defintion of entrop
viz.,

Ss5 ln
]G

]E
5~3N/421!lnE1const. ~15!

Note that for largeN, Ss→S.
We emphasize that for the above results to be true

parametersa i j should be such that system is almost chao
In this case, an equipartition of energy between theN de-
grees of freedom takes place and one has

K p1 ]H

]p1
L 5 K p2 ]H

]p2
L 5•••5S ] lnG

]E D 21

. ~16!

We then obtain

S ] lnG

]E D 21

5S 3N4ED 21

5T, ~17!

which we find in our numerical results forN52. Since we
have self interaction as well as mutual interactions betw
the coupled oscillators, equipartition of energy takes pl
not only between kinetic energies but also with interact
energy. In other words, one also has

K q1 ]H

]q1
L 5 K q2 ]H

]q2
L 5•••5S ] lnG

]E D 21

5T. ~18!

We also notice in the (N52) numerical results that the av
erage value of twice the time averaged kinetic energy of
two oscillators is equal toT, even though for each oscillato
it is not. This is because of virial theorem, which states t

(
i51

N K pi ]H]pi
L 54(

i51

N K qi ]U]qi
L 54 ^U&, ~19!

and hence the total energy

E5
1

2 (
i51

N K pi ]H]pi
L 5

1

4 (
i51

N K pi ]H]pi
L , ~20!

or
-

e
.

n
e
n

e

t

1

N (
i51

N K pi ]H]pi
L 5

4

3N
E5T. ~21!

Therefore, even though full thermalization has not tak
place still the average temperature is always related to
total energy whose value isT. This is true even for that value
of a i j for which system is integrable and has nothing to
with chaotic trajectories. So the proper test of thermalizat
is equipartition theorem, which states that time averaged
netic energy of each oscillator should approach the sa
value, which is equal toT, given by Eq.~13!.

IV. PROBABILITY DENSITY FUNCTIONS

Following either Khinchin or Berdichevsky, the probab
ity density function of thei th particle is

f 1~qi ,pi ,E!5
V i~E2ei !

V~E!
, ~22!

where V(E) is the structure function of full system an
V i(E2ei) is that of system excludingi th particle. For
N52 QO, the probability density functions~PDF! of one of
the oscillators is obtained as an elliptic function. That is,

G1~q1 ,p1 ,E!5E dp2dq2

52E
0

qmax
dq2A2E2p1

22q1
42q2

42aq1
2q2

2,

~23!

where

qmax[F2
a

2
q1
21

1

2
A~a224!q1

414~2E2p1
2!G1/2, ~24!

the maximum allowed value ofq2. Once we know the ex-
pressions forG1 andG @Eqs.~23! and~8!, respectively! using
Eq. ~22! for f we get, after some algebra,

f 1~q1 ,p1 ,E!5A
K~z!

@~a224!q1
414 ~2E2p1

2!#1/4
, ~25!

where

A2152pE1/2E
0

1

dyA2ay21A~a224!y414, ~26!

z5A1

2
2

aq1
2/2

A~a224!q1
414 ~2E2p1

2!
, ~27!

andK(z) is an elliptic function of second kind.
For theN degrees quartic oscillator system the calculat

involves complicated angular integration to get one degre
freedom PDF. However, we can evaluate one degree of f
dom momentum distribution by integrating out the positi
of one particle PDF. That is,

f ~p!5E f 1~p,q,E!dq, ~28!
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which after some algebra gives

f ~p!5

F12
p2/~2T!

3N/4 G ~3N26!/4

A3NT

2
BS 3N22

4
,
1

2D
, ~29!

whereB(x,y) is the beta function. Here we made use of E
~13! to relate energy and temperature. The plot off (p) is
given in Fig. 3 forE52.5 and forN52, 5, 20, and a Gauss
ian (N5`). We can see that asN increases the distribution
changes from a flat distribution to a Gaussian. This can a
be seen from Eq.~29!. As N→`,

f ~p!→
1

A2pT
e2p2/~2T!, ~30!

the Maxwellian distribution.
Next let us derive other thermodynamics quantities s

as pressure, density, and equation of state~EOS!. For theN
QO system pressure is given by@1#

P5(
i51

N
1

V~E!
E dpipi

2V~ i !~E2ei !, ~31!

whereV i is the structure function of the system except t
i th particle andei is the energy of thei th particle. On ex-
plicitly summing and evaluating the above integral we ge

P~q!5u02
N/2

1

V~E!
E dq1 . . .dqN~E2U !N/2, ~32!

whereu0 is a constant andP is a function of one coordinate
q. Defining

f ~E,q!5E dq2 . . .dqN~E2U !N/2, ~33!

the pressure is given by

FIG. 3. One particle momentum distribution@ f[ f (p)# of N
degrees quartic oscillator forN52 ~dotted curve!, N55 ~dash-
dotted curve!, N520 ~dashed curve!, and GaussianN5` ~solid
curve!.
.

o

h

P~q!5u02
N/2

1

V~E!
f ~E,q!. ~34!

On integrating the one particle probability density functi
@Eq. ~22!# over momentum we get

n̄~q!5u02
N/2

1

NV~E!

]

]E
f ~E,q!. ~35!

From Eqs.~34! and ~35! we eliminateV(E) to get EOS,

P~q!5
1

]

]E
lnf

n~q![Tef f~q!n~q!, ~36!

wheren(q)[Nn̄ is the density andTef f[(] lnf/]E)21 is a
position-dependent effective thermodynamic temperatu
Note thatP, n, andTef f all depend on position in the case o
a finite N system. For our special case ofa i i51 and
a i j5a j i5a/2 ,

f ~E,q!5E dN21uE
0

q08dq8N22

3FE2
1

2
q42

a

2
q2q822q84f u~u!GN/2, ~37!

where q8 and u are the radial and angular coordinates
(N21) dimensional space.f u(u) is a function of angles. It
may be also written as

f ~E,q!5E~3N21!/4f 1~ q̄!, ~38!

where f 1 is the above integral after factoring outE’s and
q̄[q/E1/4. Therefore,

Tef f
215

3N21

4

1

E
2

q̄

4E

1

f 1

] f 1
]q̄

. ~39!

From the above equations, in the region whereq!E1/4,

Tef f'
4E

3N21
5

3N

3N21
T, ~40!

and forN→` ~again, the second term in] lnf/]E is negli-
gible! Tef f→T. Hence thermodynamic temperature of a
nite N system goes to that of SM forN→`. In Fig. 4, we
have plotted EOS for anN52 QO system forE52.5 and
a5500.Tef f , the slope of the curve at largen ~small q) is
'1.7 close to 2E/3 and asymptotically (q→0) it approaches
2 @see Eq.~40!#.

V. SUMMARY AND CONCLUSIONS

We have studied some aspects of statistical mecha
and thermodynamics of quartic oscillators. Exact expressi
for temperature, entropy, and one particle momentum dis
bution forN-degrees quartic oscillators are obtained anal
cally. These results approach standard statistical mecha
results asN→`. The one particle probability function fo
N52 case is obtained analytically and is an elliptic functi
of second kind. We have verified numerically that when t
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55 2529STATISTICAL MECHANICS OF QUARTIC OSCILLATORS
system is almost chaotic, equipartition of energy takes pla
The time average and the phase average gives the same
for the parameters for which the system is almost chao
Pressure, density, and EOS of our system are also stu
For parameters for which the system is integrable, for
ampleN52, a115a2251, anda125a2150 or 2, equipar-
tition of energy does not take place and each oscilla

FIG. 4. Equation of state (P vs n) for the 2 QO system.
-

e.
sult
c.
ed.
-

r

reaches average kinetic energy separately, determined
their initial separate energies. Each oscillator exchanges
ergy with its potential and comes to some kind of equipa
tion of energy and twice the average kinetic energy is ag
given by Eq.~13! for N51. It can also be seen that the me
value of the average temperature of oscillators matches
closely with 4E/3N both for chaotic as well as integrabl
case. This result has nothing to do with chaos and follo
from virial theorem.

In conclusion, the quartic oscillator is a useful model w
chaotic or ergodic properties for a wide range of paramet
There is no resonance effect, which one has in the case o
HH model. Statistical mechanics of this model is studi
analytically. Various other thermodynamic quantities, tra
port coefficients, etc. of a chaotic system may be studied
using this model, and some work along this line is und
progress.
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